您现在的位置: 破洛洛 >> 建站学院 >> 建站指南 >> 建站经验 >> 正文

虚假流量的认知与识别(下篇)

作者:佚名 来源:chinaz 更新时间:2018-10-10
分享到

QQ截图20180829093617.png

图片来源图虫:已授站长之家使用

作者:张乔,神策数据内容营销负责人。公众号:神策数据

在《虚假流量的认知与识别(上篇)》中介绍,虚假流量的识别可从基本属性、产品参与度、转化情况三方面来识别。

  • 首先,基本属性。具体包括:时间 & 地域维度、终端类型、操作系统、联网方式、运营商、IP 集中等

  • 其次,产品参与度。具体包括:跳出率、平均访问深度、平均访问时长、用户行为路径、页面点击情况、流量留存情况、单页面人均访问次数等。

  • 第三,转化情况。因为很多作弊流量可以模仿人类行为,成功绕过跳出率、平均访问深度和停留时长这些宏观指标,但是要模仿一个业务转化就 比较难了,如果宏观指标表现很好,业务转化很少的话,就需要提高警觉。

下面通过一个案例从用户行为数据多维诊断虚假流量。这个案例围绕上述三种A 企业是电商企业,日常会在社会化媒体进行广告投放,在 1 月 8 日线上数据投放的常规检查中发现,近期一家媒体(下 称“M 渠道”)所带来的流量数据异常大。为查明该媒体渠道所带来的流量是否为虚假流量,A企业将M渠道下的用户行为进行多维度细分,进行流量排查。

一. 基本属性初步排查

流量访问通常会分布在一天中的各个时段,伴随平滑的曲线形成访问高峰与低峰。显然虚假流量不具备这一特点,因为人 为 / 机器操作为节省成本不会在意流量的时间分布,难免会在时间曲线上会有流量突增的情况。因此,要找到异常流量发 生的时间点,将时间细化到每小时的访问数据,如果流量过于集中在某个时段,或者在不恰当的时间点出现了流量激增的 情况,这时候就要引起注意了。

1. 时间维度

图1 M 渠道与百度渠道流量对比

通过图 1 看到,百度流量来源呈现平缓变化,从流量时间分布上看,基本符合正常访问情况。与之形成鲜明对比的是, M 渠道全天流量高峰期分别在 2:00、5:00、14:00、15:00。这几个时段内的流量过于集中,而在其他正常时段内,流量几乎为零。 经过内部确认,该阶段并未有活动发生,产生突增的访问高峰十分可疑。

2. 用户访问设备

图2 从设备情况了解 M 渠道用户的操作系统

上文提到在正常情况下,同样用户访问设备应该多元化。在这个案例中,通过上图发现 M 渠道流量设备基本都是 Android 端。 由于 M 渠道未投放,更没有设备限定,增加了虚假流量的可能性。

3. IP 集中

图3 按 IP 查看 Web 浏览页面触发用户数

一般而言,IP 的频繁点击、流量激增都是不正常的。我们通过数据可以看到,图中 IP 带来的流量在2:00、5: 00 和15:00 均有突变,尤其140.205.92.1 表现最明显。经过以上维度诊断,此流量十分可疑,可结合产品参与度进行深度判定。

二. 产品参与度深度判定

1. 跳出率

虚假流量产生高跳出率的时间,通常会和用户访问时间段一致。因此可以结合流量时间等因素进行综合对比。

图4 M 渠道来源流量的跳出率

转载请注明:破洛洛(谢谢合作)
网友评论:
博聚网